
SIMILAP~TY OF UNDEVELOPED TURBULENT NEAR-WALL FLOWS 
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It is shown that logarithmic formulas can be derived for the mean turbulent flow 
velocities at a smooth wall under lesser limiting assumptions than is customary I: 
by using the Isaacson-Milliken method. It can be concluded from a comparison 
with experiment that the generalized similarity laws are useful to describe turbu- 
lence at moderate Reynolds numbers. 

In describing turbulent near-wall flows by using dimensional analysis and similarity, 
it is initially necessary to extract the subdomains with different governing parameters. 
Thus, for the flow near a smooth wall whose mean velocity can depend on the distance to the 
wall y, the boundary layer thickness (tube radius) 6, the dynamic velocity u,, and the fluid 
viscosity ~ (for a homogeneous incompressible fluid the density can be considered equal to 
one), two subdomains are ordinarily separated out [i]. As it is assumed, the dependence on 

is not essential in the internal subdomain near the wall, while the nature of the flow 
is independent of the viscosity in the external subdomain at the outer edge of the boundary 
layer. Correspondingly, we can write for the mean velocity distribution in these subdomains 

< u > = u,fi(y+), y+=--yu,/~; (1) 

U-- <u > = u,f~01), ~] --y/6. (2) 

Following Isaacson and Milliken [i], we assume that there exists a common domain in 
which the mean velocity distribution is representable in both form (I) and form (2) ("over- 
lap domain"). The form of the dimensionless functions of the dimensionless variables f~(n) 
and f2(n) is determined to the accuracy of constant coefficients in this domain. Indeed, 
we can write for the mean velocity gradient in the overlap domain 

d 

and since the equality between functions of different arguments is possible only if they 
equal the same constant, it here follows 

f~ (y+) = A In y+ + Bin, ~ (q) = A In ~ + B2o, (3) 

as well as an important formula for U/u, 

U/u, = A l n ~ + B t o  + Bm, ~--6u,/~. (4 )  

This is the traditional scheme for turbulent boundary-layer analysis which allows a 
simple generalization that turns out to be important for an inadequate development of the 
turbulent flow at a wall (for small Reynolds numbers). To derive the logarithmic distribu- 
tions for the mean velocity by the Isaacson-Milliken method, weaker assumptions than those 
made above are adequate. It is sufficient to assume that cutting down the number of essen- 
tial governing parameters is possible in just one of the subdomains, while all the param- 
eters mentioned, y,6, u,, v,play an important role in the other. Then, two cases are pos- 
sible depending on which subdomain the meduction of the description holds. 

Let us assume first that autonomy (independence of one of the parameters, namely 6) is 
valid just for the inner sublayer while the influence of v~scosity is extended to the outer 
edge of the flow (to the axis in the case of a tube). Then, as before, (i) is true for the 
inner subdomain, but we can write in place of (2) for the outer part of the flow 

U - -  ( u > = u ,  F2 (~, ~) = u ,F~  (y+/~, ~). (5) 
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Assuming that (i) and (5) can be used in some intermediate domain (i << y+ << ~) , we have the 

following relationship for the mean velocity gradient 

Y-7$. < u > / u * = Y V ~ ( Y + ) = - - Y +  F~(Y+/~' ~)' (6) 

in which an arbitrary* dimensionless function of one variable A(y +) can be written on the 
right in the general case, i.e., the logarithmic derivative of the mean velocity can depend 
on y+ in the overlap domain. There follows from (6) 

[~ (y+) = ; dy+A (y+)/y+ + const, 

Fz (% ~) = -- J d~iA (~l~)/rl -4- C2 (~). 

I f  t h e  f u n c t i o n  A(y +) i s  expanded  p i n  a s e r i e s  o f  i n v e r s e  powers o f  a l a r g e  p a r a m e t e r  

1 
A (y+) = Aoo + Aoi -~+- + . . . .  (7)  

then we will have to the accuracy of terms of the three fundamental orders of magnitude 

1 (g) 
�9 f~ (y+) --  Aoo In y+ + Bto - -  Aot ~ + "'" , 

= - - A o o l n ~ + B z ( ~ ) + A o ~  1--~ -4- . . . .  (9) F2(% D 

Taking account of (i) and (5), we hence obtain in place of (4) 

U/u, = Aoo In ~ + Bio + B2 (~). �9 (10) 

For this formula to be sufficiently meaningful, it is still necessary to determine the form 
of the function B2(~) from either additional considerations or experiment. It can be ex- 
pected that for large Reynolds numbers ~ this function will tend to the universal constant 
B=o and (9) will go over into (4), and an expansion in the large parameter ~ 

B 2 ( ~ ) = B 2 0 + B m  1 + . . . .  

can  be u s e d  u n d e r  c o n d i t i o n s  n e a r  t h e  l i m i t .  

In  c o n f o r m i t y  w i t h  ( 1 0 ) ,  i t  i s  p o s s i b l e  t o  e x p r e s s  ~ i n  t e rms  of  t he  o t h e r  l a r g e  param-  
e t e r  U / u ,  and t o  use  an e x p a n s i o n  i n  t h i s  p a r a m e t e r  as  i n  [2]  to  d e r i v e  t h e  d rag  f o r m u l a  
f o r  a b o u n d a r y  l a y e r  a t  low Reynolds .  numbers  ( c h a n g e s  e l i m i n a t i n g  t h e  a b o v e - m e n t i o n e d  e r r o r  
s h o u l d  be  i n s e r t e d  in t h e s e  f o r m u l a s ) .  

For  the  o t h e r  g e n e r a l i z a t i o n  we assume t h a t ,  c o n v e r s e l y ,  t h e  o u t e r  subdomain remains  
au tonomous ,  i . e . ,  t h e  o u t e r  f l o w  i s  i n d e p e n d e n t  of  t he  v i s c o s i t y .  As r e g a r d s  t h e  i n n e r  s u b -  
domain,  t h e  i n f l u e n c e  o f  e v e n  t he  i n t e g r a l  s c a l e  o f  t y p e  ~ ( o r  t h e  r a d i u s  i n  t h e  c a s e  o f  a 
tube )  on i t  i s  a l l o w a b l e .  Then as b e f o r e ,  (2) i s  v a l i d  f o r  t h e  o u t e r  subdomain and we ob-  
t a i n  i n  p l a c e  o f  (1) 

< u > = u,F~(y +, ~) u ,F~(~,  ~). ( l l )  

In  the  o v e r l a p  domain (1 /~  << n << 1 ) ,  where  (1) and (11) a r e  s i m u l t a n e o u s l y  v a l i d  by 
assumption, we can write for the mean velocity gradient 

d 0 y - ~ y  (u>/u,----N-~N F t ( ~ ,  ~ ) = ' N f 2 ( ~ ) ,  (12) 

f rom which  t h e r e  f o l l o w s  a n a l o g o u s l y  t o  t h e  p r e c e d i n g  

F~ (g+, ~.)= S dg+A (Y+/~')/Y+ q - e l  (~); (13) 

[2 (~1) = - -  S d~lA (~)/~ q- const. 

*The same case with a nonautonomous outer sublayer was considered earlier in [2] and an un- 
founded conclusion on the constancy of the quantity A was made. 

%The further analysis is close to that known for a thermally stratified boundary layer [i]. 
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If the expansion of the function A(q) in a series in the small parameter n is used 

A (~) = A00 + A 0 ~  ~ . . . .  , 

t h e n  t h e  f u n c t i o n s  f rom (13) a r e  a l s o  r e p r e s e n t e d  by t he  e x p a n s i o n s  

F~ (y+, ~) = Aoo In y+ + Bi  (~) + AoiY+/~  + "'" , 

f.~ (TI) - -  - -  Aoo In Vl -+- B2o - -  Aoi~l + . . . .  

(14) 

We hence obtain a formula for U/u, 

U/u,  = A00 In ~ + B ~ )  + B~, (15) 

which does not differ substantially from (i0) for the case considered earlier. It actually 
yields the "local drag law" for the known universal function BI(~) and the universal con- 
stants Aoo, B2o since cf = 2(u,/U) 2, Re - U6/~ = ~(2/cf)!/2 

The essential distinction from the preceding case is that now namely the parameter BI 
of the inner similarity law (the "law of the wall") turns out to be a function of the Rey- 
nolds number ~. A similar inconstancy of the additive coefficient of the logarithmic veloc- 
ity profile at low Reynolds number has been repeatedly noted in experimental investigations. 
A great deal of attention has been paid to this fact in [3], in which a sufficiently strongly 
descending dependence of the coefficient BI on the integral Reynolds number is established 
for flow in tubes as the Reynolds number varies from 3-103 to 104 , and the coefficient BI 
reached the constant universal value B1o only for large Reynolds numbers. 

For the case of a tube the dependence of BI on ~ is directly a dependence on a Reynolds 
number of the form ru,/~. However, it is easy to conceive that this is equivalent to the 
assertion about the dependence of B~ on the Reynolds number understood in any other sense. 
Indeed, there follows from (15) 

r__U__U = U u.r  _ ~ [A ln ~ + BI (~) + B2o], . 
V U,  V 

so t h a t  ~ can be  e x p r e s s e d  i n  t e r m s  o f  rU /9 .  t t e r e  U i s  t h e  mean v e l o c i t y  on t h e  tube  a x i s ,  
b u t  U can  be e x p r e s s e d  in  t e rms  o f  the  f l u i d  mass f low r a t e  by u s i n g  i n t e g r a t i o n  o f  t h e  v e l -  
o c i t y  p r o f i l e s  (2) and (11) a c r o s s  the  tube  s e c t i o n .  

As a n o t h e r  p r o o f  o f  the  a b s e n c e  o f  autonomy of  t h e  i n n e r  n e a r - w a l l  domain ,  t he  r e c e n t l y  
e s t a b l i s h e d  e x p e r i m e n t a l  f a c t  o f  t h e  dependence  o f  t h e  mean p e r i o d  o f  " e x p l o s i v e "  r enewa l  o f  
t h e  f low i n  t he  v i s c o u s  s u b l a y e r ,  i . e . ,  i n  t h e  i n n e r  domain ,  on such  e x t e r n a l  f a c t o r s  as 6 and 
U can be mentioned (see, e.g., [4]). 

In conclusion, let us discuss still another possible generalization. We assume that in 
both the outer and inner subdomains there is autonomy (one is independent of the viscosity, 
and the other of the integrated length scale), however, still a third intermediate subdomain 
exists in which all the parameters y', 6, u,, ~ are important. Then as before, (i) and (2) 
will be applicable in the outer and inner subdomains while we can write 

< u > = u , r  (y+, ~) 

in  the  i n t e r m e d i a t e  subdomain .  

Assuming t h a t  t h e r e  a r e  two d i s t i n c t  o v e r l a p  domains  be tween  a d j a c e n t  subdoma ins ,  t he  
fo rm o f  t h e  mean v e l o c i t y  p r o f i l e  in  t h e s e  o v e r l a p  zones  can  be found  c o m p l e t e l y  a n a l o g o u s l y  
t o  t h e  p r e c e d i n g  

f (y+) = Ato In y+ + Bto - -  Ati 7 ~- " '" 

1 Aiolny++Bto--Ati ~ + -'" 
(y+, ~) = Y~ 

A2o In y+ + B2 (~) +A21 @ y+ + 

F (N) = --A2o In ~l + B2o - -  A2p] + . . . .  

Attention is turned here to the appearance of two logarithmic sections of the velocity pro- 
file with different factors for the logarithms corresponding to the two distinct overlap do= 
mains. 
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NOTATION 

y, distance to the smooth plane wall; 6, boundary layer thickness; u,, dynamic velocity; 
v, fluid viscosity; <u>, mean flow velocity in the boundary layer; U, outer flow velocity; 
y+ ~ yu,/~, dimensionless coordinate; fl, FI, f2, F2, notation for the universal dimension- 
less functions of the dimensionless arguments y+; n ~ y/~; ~ ~ ~u~/~; Akl, Bmn , numerical 
factors; cf = 2u$/U 2, local drag coefficient; Re = U~/~, Reynolds"number. 
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INFLUENCE OF TEMPERATURE ON THE HYDRODYNAMIC RESISTANCE REDUCTION EFFECT 

I. L. Povkh, A. I. Toryanik, UDC 532.013.12:536.4 
B. P. Makogon, and V. M. Abrosimov 

The effect of temperature on hydrodynamic resistance of aqueous solutions of 
PolYethylene oxide is established experimentally. 

Of the large number of studies dedicated to reduction in hydrodynamic resistance by 
addition of polymers, only in a few cases has the temperature dependence of this phenomenon 
been considered [1-4]. Analysis of these studies leads to the conclusion that the question 
of the effect of temperature on the effectiveness of polymer additives is still far from 
solved. At the same time clarification of this matter is not only of great practical inter- 
est, but would also permit a refinement of certain aspects of the Toms effect and a more de- 
tailed description of the structure of polymer solutions. 

The materials studied in the present study were true aqueous solutions of polyethylene 
oxide (PEO), prepared by the firm WDN Chemicals, Ltd (England), having a molecular mass of 
3-104. The hydrodynamic resistance was measured with the pumpless apparatus of [ii], having 
the following basic parameters: working volume, 700.10 -6 m3; tube diameter, 2.68.10 -3 m; 
channel length, 1.876 m. Measurement accuracy was of the order of 2%. 

In the present study PEO solutions with a mass concentration of 0.003% were examined, 
this being the optimum concentration level at 18~ This was done because the resistance 
reduction effect is more sensitive to changes in external conditions at concentrations equal 
to or less than the optimum one [3]. 

The experimental results shown in Fig. i indicate a decrease in effectiveness of the 
PEO additive with increase in temperature. It is also evident from the figure that at all 
temperatures studied, the transition from laminar to turbulent flow regime occurs at the 
critical Reynolds number, i.e., no protracted maintenance of laminar flow was observed. At 
18 and 38.5~ the polymer additive begins to act effectively even in the transition region. 
At higher temperatures, after the transition to the turbulent regime, there exists a Rey- 
nolds number range in which the additive has no effect on flow resistance. The resistance 
reduction effect at these temperatures appears only after attainment of a threshold Reynolds 
number, the value of which increases with increase in temperature. 

Since the studies were performed at elevated temperatures, it could be suggested that 
thermal .destruction of the macromolecules had a significant effect on effectivenss of the 
polymer additive. This effect could not be avoided completely, so to reduce the effects of 
thermal destruction and improve repeatability of the results the solutions were maintained 
at elevated temperatures for identical times of 30 min. The following experiment was per- 
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